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Abstract

This study examines the impact of soil erosion on crop yields in the United States
(US) using county-level panel data. We use linear panel fixed effects (FE) models
and a number of robustness checks to assess how soil erosion affects the mean,
variance, skewness, and kurtosis of US corn and soybean yield distributions. Our
analysis suggests that soil erosion, specifically caused by both water and wind,
has a statistically significant negative impact on mean corn and soybean yields.
We also find evidence that counties with higher levels of soil erosion tend to have
corn yields with statistically higher variance and kurtosis. This suggests that soil
erosion can lead to higher corn yield risks (or more instability in corn yields over
time). However, we do not find strong evidence of this risk-increasing-effect for
soybean yields. Moreover, our analysis indicate that water-caused erosion tends
to have a larger mean-yield-reducing effect compared to wind-caused erosion for
soybeans, whereas no strong evidence of this pattern is found in corn. Overall,
we estimate that the total damage of soil erosion for corn and soybeans in terms
of mean yield reduction and risk increases amounts to around $4.43 billion in
2024. Findings from our analysis provide a better understanding of the economic
damage caused by soil erosion since we not only provide evidence of its potential
mean-yield-reducing effect, but also provide evidence of its potential risk-increasing
effect.
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1 Introduction

Soil erosion is a significant threat to agricultural production worldwide primarily due to

its role in degrading soils on farmland (Lal and Moldenhauer, 1987; Jang et al., 2021).

Much of the economic damage from soil erosion in agriculture can be attributed to on-

farm (or on-site) soil degradation that potentially leads to lower farmland productivity,

higher input costs, crop yield reductions, lower incomes, and, under extreme erosion,

farmland abandonment (Kalantari et al., 2019; Hediger, 2003; Ervin and Mill, 1985;

Alewell et al., 2020).1 Globally, nearly one-third of the world’s arable land has been

lost to soil erosion over the last four decades, with current annual losses estimated to

exceed 24 million acres yearly (Pimentel et al., 1995). From 1955 to 1995, Pimentel et al.

(1995) estimated that the annual economic loss due to soil erosion in the United States

(US) is $44 billion, including $27 billion from on-site agricultural productivity losses.2

More recent estimates for the US Corn Belt suggests that erosion-caused topsoil losses

in the region resulted in crop yield reductions equivalent to around $2.8 billion annually

(Thaler et al., 2021).

Accelerating soil erosion rates negatively affects row crop yields by depleting on-

farm soil nutrients, reducing soil organic matter (or soil organic carbon), lowering water-

holding capacity, and decreasing effective root depth of the plants (Lal and Moldenhauer,

1Notwithstanding that the majority of the effect of soil erosion is on-farm (or on-site), it is important
to note that soil erosion has also contributed to off-farm (or off-site) environmental problems mainly
through soil runoff and sedimentation in water bodies (Lal, 2001). Runoff and sedimentation can
then lead to water quality degradation (e.g., pollution, eutrophication), disruption to fisheries, loss of
wildlife habitat and biodiversity, and heightened flood risks (Colombo et al., 2005; Issaka and Ashraf,
2017; Kalantari et al., 2019; Patault et al., 2021; Ferreira et al., 2022; Panagos et al., 2024). Beyond
its impacts on water systems, soil erosion also disrupts carbon sequestration and biogeochemical cycles,
thereby exacerbating global climate change, food insecurity, and long-term sustainability of agriculture
(Lal, 2004, 2005; Van Oost et al., 2007; Quinton et al., 2010; Sartori et al., 2024).

2In a separate study, Crosson (1995) suggested a lower figure for the economic damage caused by
soil erosion in the US – ranging between $500 to $600 million yearly.
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1987; den Biggelaar et al., 2003; Carr et al., 2021; Borrelli et al., 2018; Gu et al., 2018;

Ouyang et al., 2018; Thaler et al., 2021; Zhang et al., 2021). Although measuring

reductions in mean crop yields is important for estimating direct economic losses due

to soil erosion in agriculture (Thaler et al., 2021), another important dimension of loss

(or damage) is the potential impact of soil erosion on yield risk or yield variability over

time. Since farmers typically do not want large year-to-year variation in yields and

income (e.g., farmers are typically risk-averse), increased yield variability is therefore

another economic damage from soil erosion that needs to be better understood (and

quantified).

This paper aims to address the question of whether and how much soil erosion affects

corn and soybean yields in US agriculture. In particular, we quantitatively examine the

impact of soil erosion on the four moments of US county-level corn and soybean yield

distributions, focusing on its effects on the mean, variance, skewness, and kurtosis of

yields. We give insights not only on the impact of soil erosion on mean yields, but also

its effect on yield risk (as represented by the combined impact on the variance, skewness

and kurtosis of yields). To achieve the study objectives, we construct a novel county-level

data set for the US that includes information on row crop yields (e.g., corn and soybeans),

soil erosion, and a number of control variables (e.g., weather variables, etc.). The unique

county-level panel data set constructed allows us to estimate linear panel fixed effect (FE)

models that can help address potential endogeneity due to time-invariant unobservables.

A variety of robustness checks are also conducted using different empirical specifications

and alternative estimation procedures (e.g., instrumental variable models) in order to

help validate the strength of the results from the linear panel FE models, and address

potential endogeneity issues not captured in the linear panel FE models.

There is an extensive body of literature on soil erosion in agriculture. For example,
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there have been agronomic studies that used small-scale on-farm experiments to show

that soil erosion negatively affects mean crop yields, including comparisons of in situ

field plots (or transects) with simulated erosion (e.g., through removal of the top soil

or desurfacing) versus those without erosion (Gollany et al., 1992; Schertz et al., 1989;

Weesies et al., 1994; Larney et al., 2000; Salako et al., 2007; de la Rosa et al., 2000;

Liang et al., 2018). Notwithstanding the preponderance of soil erosion studies that use

field experiments, researchers have also utilized greenhouse and laboratory experiments,

simulation modeling techniques, statistical approaches, and knowledge-based surveys, to

show that soil erosion is detrimental to mean crop yields (Lal, 1998).

In addition to its effect on mean yields, there are several field studies that also in-

vestigate the impact of soil erosion on yield variability (or what crop scientists typically

call yield stability), where the main yield variability measure is generally based on the

variance or standard deviation of yields (Lin et al., 1986). In general, the literature

mostly indicates that soil erosion increases yield variability and promotes yield instabil-

ity, although there may be heterogeneity in soil erosion effects depending on a number

of contextual factors (i.e., such as cropping systems used, tillage used, whether a farm is

organic or not, and the soil properties of the field) (Knapp and van der Heijden, 2018;

Lawes et al., 2009; Waqas et al., 2020; Grover et al., 2009; Lal, 2010).

Outside of the literature that explored the effects of soil erosion on mean yields and

yield variability, there are also a number of studies that examined the potential on-

farm economic impact of soil erosion. These economic studies typically focus on how

soil erosion can lead to farm income losses or the costs associated with rehabilitating

or managing eroded farmlands (Seitz et al., 1979; Walker, 1982; Baffoe et al., 1987;

Pagoulatos et al., 1989; Goetz, 1997; Dissart et al., 2000; Hediger, 2003). Other economic

research focus on the impact of soil erosion control investments on land prices (Ervin
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and Mill, 1985; Hertzler et al., 1985; Sen Chakraborty et al., 2023).

In light of past studies on soil erosion in row crop agriculture, our study contributes

to the literature in a couple of ways. First, to the best of our knowledge, there has been

no recent observational study that econometrically models how erosion-caused annual

soil loss directly affects the moments of crop yield distributions in the US. By carefully

examining the impact of soil erosion on the higher moments of the yield distribution (e.g.,

variance, skewness, and kurtosis), this study provides empirical evidence on whether soil

erosion increases production risk in US row crop agriculture. If soil erosion is found to

have a yield risk-increasing effect, the total damage caused by erosion can then be more

accurately assessed, accounting for both its impact on mean yields and its contribution

to higher yield risk.

Our second main contribution is providing inferences on the impact of soil erosion

on crop yield distributions over a larger geographical area than most of the previous

literature. Previous plot- or field-level studies looking at the effect of soil erosion on

crop yields tend to have a narrower geographical scope.3 The present study utilizes

unique county-level soil erosion data from the National Resources Inventory (NRI) sur-

vey, combined with crop yield data from the National Agricultural Statistics Service

(NASS) surveys. This dataset covers thousands of counties across the US, from the west

coast to the east coast (particularly for corn), over a longer time period compared to

previous studies. Hence, we have better external validity for our analysis. In addition,

the county-level panel data set we constructed reflects actual on-farm behavior (albeit

at a more aggregate county-level) since it is not based on small-scale field experiments.

Small-scale field experiments do not necessarily represent conditions on-farm, and anal-

3Exceptions include studies that used simulation-based models (Bakker et al., 2007) or those that
combine biophysical models with macroeconomic models (Panagos et al., 2018) to investigate the yield
and economic impact of soil erosion in Europe.
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ysis that reflects on-farm conditions (even at a more aggregate level) provides more

valuable policy-relevant information.

Lastly, the data utilized in this study allow us to investigate potential heterogeneity

in the effect of soil erosion depending on the row crop considered (i.e., corn versus

soybeans) and depending on the main cause of soil erosion (i.e., combination of water-

and wind-caused erosion versus soil erosion separately caused by water or wind). Thus,

our study also contributes to the literature by providing inference on the heterogeneity

of soil erosion effects across crops and across causes of erosion, which have not been

thoroughly examined in previous literature over a large geographical scale in the US.

Findings from our empirical analysis suggest that soil erosion cumulatively caused by

both water and wind can reduce mean corn and soybean yields in the US and this effect is

statistically significant. Moreover, corn-producing counties with higher combined water-

and wind-caused soil erosion tend to have statistically larger yield variance and kurtosis.

This implies that soil erosion due to both water and wind can increase corn production

risk and this implies more unstable US corn yields over time (i.e., potentially larger

downside and upside yield swings). However, we do not find strong evidence of this risk-

increasing-effect for the case of soybean yields. We also find evidence that water-caused

erosion tends to have a larger mean-yield-reducing effect compared to wind-caused ero-

sion in soybeans (but not for corn). Therefore, our analysis provides evidence on the

heterogeneity of the effect of soil erosion depending on the row crop being considered

and the cause of soil erosion. We also estimate that the total damage of soil erosion

for corn and soybeans in terms of mean yield reduction and risk increases amounts to

around $4.43 billion in 2024. These insights provide important information that could

help guide row crop producers in their decision-making with regards to adopting soil

health practices that can help preempt soil erosion problems and also whether or not to
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seek cost-share payments to help alleviate the cost of adopting these practices.

2 Background: Soil Erosion and Crop Yields

The two primary forces driving soil erosion are wind and water. Water erosion refers

to the removal of soil from the surface due to rainfall, runoff, snowmelt, and irriga-

tion. Among these, rainwater-driven runoff plays a crucial role, as it transports organic

and inorganic soil particles downslope, depositing them in lower landscape areas. The

eroded material can either contribute to new soil formation or simply accumulate in

streams, lakes, and reservoirs. While all soils experience some degree of water erosion,

slight erosion can actually be beneficial for soil formation, whereas severe or accelerated

erosion has detrimental effects on both soil quality and the environment. Therefore, un-

derstanding the processes and extent of water erosion is essential for developing effective

erosion control strategies (Blanco and Lal, 2023). The main factors influencing the rate

of soil erosion by water include precipitation, soil type, topography, land use, and land

management (Panagos et al., 2015).

More specifically, water-caused erosion strips away the fertile topsoil layer, which is

rich in essential nutrients and organic matter needed for healthy crop growth (Pavl̊u

et al., 2022). Consequently, this reduction in topsoil depth weakens the soil’s ability to

retain water, impedes root penetration, and limits nutrient availability, making it harder

for crops like corn and soybeans to achieve high yields (Thompson et al., 1991; Xu and

Mermoud, 2001). As a result, crops grown on water-eroded soils may have lower yield

potentials, especially under drought conditions, where less water is available for uptake

by plant roots due to reduced soil depth and porosity.

Similarly, wind erosion, also known as eolian erosion, is a dynamic process in which
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soil particles are detached and transported by wind forces. It occurs when wind speed

exceeds the soil’s resistance to erosion (Webb et al., 2021). The rate and severity of

wind erosion are influenced by geological, anthropogenic, and climatic factors. Key vari-

ables affecting wind erosion include wind velocity, precipitation levels, surface roughness,

soil composition and aggregation, agricultural activities, vegetation cover, and field size

(Borrelli et al., 2017). Additionally, abrupt fluctuations in weather patterns can trigger

wind erosion events more frequently (Duniway et al., 2019).

Wind erosion is primarily driven by deforestation and agricultural activities. For

example, soils that are plowed and have low organic matter content, as well as those

that are intensively grazed and trampled upon, are particularly vulnerable to erosion

(Wiesmeier et al., 2009). Wind erosion affects crop yield by removing fine soil particles,

including clay and organic matter, which are critical for maintaining soil fertility and

moisture (Sterk, 2003). This process leaves behind a coarser, less fertile soil profile,

reducing the soil’s ability to support optimal plant growth. Additionally, the loss of

fine particles disrupts soil structure, diminishing its capacity to retain moisture and

nutrients essential for corn and soybean development (Colazo and Buschiazzo, 2015; Li

et al., 2008).

Furthermore, wind erosion can cause direct plant damage, as wind-blown soil parti-

cles may injure seedlings, hinder crop establishment, and increase susceptibility to pests

and diseases. Collectively, these factors contribute to consistently lower average yields,

particularly in regions with frequent high winds and exposed topsoil (Nordstrom and

Hotta, 2004; Zhao et al., 2022; Duniway et al., 2019).

The discussion above indicates that water- and wind-caused soil erosion not only has

the potential to significantly reduce mean yields (as have been demonstrated frequently

in previous literature), but it also has the potential to heighten production risk in US
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row crop production through its impacts on the higher moments of the yield distribution.

The mechanisms by which water- and wind-caused erosion reduce mean crop yields also

likely contribute to whether and how much soil erosion impacts the higher moments of

the crop yield distributions (and therefore the risk and stability of yields over time).

For example, since water and wind caused soil erosion can lead to significant soil

nutrient loss and reduced moisture holding capacity (both of which are essential for crop

health), continuous exposure to erosive factors will result in the soil becoming less fertile

and more heterogeneous. This can lead to greater yield variability (or yield variance)

over time, which then leads to more unpredictable crop performance across seasons and

fields.4 Fields with higher erosion are prone to lower-than-average yields, particularly

under stress conditions (e.g., droughts). This effect increases the likelihood of “left-tail”

outcomes in the yield distribution, where crop failures or significant yield reductions

are more frequent than bumper crops, resulting in negative skewness. With persistent

exposure to soil erosion, yield distributions may exhibit higher kurtosis, reflecting a

greater frequency of extreme low-yield events. This leptokurtic distribution pattern

suggests that soil erosion can make extreme poor yields more common, while making

extremely high yields rare, as the soil quality and structure can no longer support very

high yields.

For US farmers, these shifts in the moments of crop yield distributions imply greater

challenges in terms of risk management, potentially higher insurance costs, and the need

for targeted conservation efforts to maintain soil health and yield stability over time.

Ultimately, it is an empirical question whether soil erosion levels generally increase risk

4However, as briefly noted in the introduction, the literature examining effects of soil erosion on yield
variance (or standard deviation) suggests that contextual factors such as tillage systems and inherent
soil properties (e.g., soil organic content and water-holding capacity) influences how erosion can impact
the stability of yields over time. It is possible that for some cropping systems and soil types soil erosion
do not significantly reduce yield stability over time.
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in the US agricultural context. And the current paper aims to provide empirical evidence

on this issue for corn and soybean production in the US.

3 Data and Estimation Strategies

3.1 Data Description

The unique county-level panel data used in this study was collected from various sources.

Corn and soybeans account for 87% of US production of grains and oilseeds (Zulauf

et al., 2023), and as such, yields from these two crops serve as our two main dependent

variables. County-level data on corn and soybean yields, measured in bushels per acre,

were obtained from the NASS Quick Stats database. These yield estimates are derived

from farmer surveys and field measurements, providing a comprehensive coverage of

agricultural productivity across US counties. NASS compiles annual county-level crop

data for various grains, including corn and soybeans. However, due to the reliance on

sample surveys, not all counties are represented in the data. A minimum threshold is

required for publication, and counties that do not meet this threshold are often grouped

together under a “Combined Counties” category within their respective Agricultural

Statistics District (ASD). To provide broader coverage, some states publish data at the

ASD level for key production areas, where detailed county-level data are unavailable.

Given these limitations, our analysis only includes counties where both NASS crop yield

and (as discussed further below) soil erosion data are available, ensuring consistency

throughout the study.

Our main independent variable of interest, annual soil loss data due to erosion (in

tons per year), were obtained from the National Resources Inventory (NRI) program,

managed by the USDA’s Natural Resources Conservation Service (NRCS). The NRI
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program provides scientifically comprehensive and reliable data on the state, condition,

and trends of soil, land, water, and related resources in the US (Larson et al., 1985). It

is regarded as the most extensive quantitative effort undertaken to date for evaluating

the prevalence and magnitude of soil erosion in the US and it has been utilized in a

number of previous studies (Goodwin and Smith, 2003; Chen et al., 2022). Moreover,

the NRI employs a stratified two-stage sampling method, where representative land

segments and sample points are selected for assessment. This process utilizes remote

sensing techniques in conjunction with field validation to ensure accurate and reliable

estimates of soil erosion that is representative across non-federal US lands, including

private properties and tribal territories.

The erosion data used in our study include estimates for both water caused and

wind caused soil erosion. The NRI’s soil erosion estimates are partly based on pre-

dictive models rather than direct measurements. For water erosion, the Universal Soil

Loss Equation (USLE) model was used for erosion estimates prior to 2008, while the

Revised USLE (RUSLE2) model was adopted for subsequent years. In contrast, wind

erosion estimates were based on the Wind Erosion Equation (WEQ) model. These mod-

els calculate average annual rates based on the long-term average climatic conditions,

management practices, and land characteristics at each sample site. Erosion data are

collected for cropland, including both cultivated and non-cultivated land. The data are

reported in terms of annual soil loss (in tons) due to water erosion, wind erosion, and

total erosion, which is the sum of the two.

For this study, erosion data from years 1987, 1992, 1997, 2002, 2007, 2012, and 2017

are used. Each data point reflects the soil loss recorded in a specific year, with updates

every five years capturing the annual soil loss for that specific period. To maintain

consistency, all other variables, including the corn and soybean yield variables, were
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restricted to the same years as the erosion data, even if data were available for other

years. This ensures that the analysis consistently reflects the effects of soil erosion on

agricultural productivity over time.

Information about several control variables were also collected to account for external

factors influencing crop yields. Weather data, including growing degree days (GDD),

harmful (or high temperature) degree days (HDD), and precipitation levels, were ob-

tained from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM)

climate dataset to serve as the primary controls in our analysis. GDD captures the tem-

perature range favorable for crop growth (8–29◦C) over the May to September growing

season, while HDD measures high temperatures that can be harmful (above 29◦C) dur-

ing the same period, following thresholds established by Schlenker and Roberts (2009)

and Annan and Schlenker (2015). These two variables account for the non-linear effects

of temperature on yields. Additionally, we include accumulated precipitation (in mm)

over the May to September growing season and a squared precipitation term to account

for potential non-linear impacts of moisture on crop yields, as is common in the climate

econometrics literature.

Overall, our data sample for corn consists of 12,421 observations from 2,265 counties,

covering the following years: 1987, 1992, 1997, 2002, 2007, 2012, and 2017. Similarly,

our soybean data comprises 10,418 observations from 1,910 counties for the same years

as corn. Summary statistics for the variables used in this research are presented in Table

1 and 2 for corn and soybeans, respectively. Figure 1 and 2 illustrate the spatial coverage

of US counties included in the dataset for the separate corn and soybean yield analysis

conducted. A county is shaded if at least one year of yield data is available during the

estimation period. White counties are excluded due to missing or incomplete records.

Appendix Figures A.1–A.10 provide a visual overview of the spatial and temporal
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patterns of key variables. Figure A.1 shows histograms of county-level soil erosion, corn

yield, and soybean yield for the first and last years of the sample. Figure A.2 plots

annual averages of these variables over time. Figure A.3 displays long-term average soil

erosion by county, based on total water and wind erosion across all years. Figure A.4

compares soil erosion between the start and end of the study period. Figures A.5 and

A.6 present absolute and percentage changes in erosion between early–mid and mid–late

periods.5 Figures A.7 and A.9 show county-level averages of corn and soybean yields,

while Figures A.8 and A.10 compare yield distributions between the first and last years.

Overall, these figures show sufficient variability in yields and soil erosion levels across

counties and over time.

3.2 Estimation: Baseline model

To examine the potential impact of soil erosion on crop yields, we extend the panel fixed-

effects regression model in Tack et al. (2015) by incorporating a soil erosion variable in

the specification together with the weather and other variables in their specification:

Yit = M1(Xit) + εit = αSit + βWit + γ1t+ γ2t
2 + µi + εit,(1)

where Yit represents the yield (for either soybean or corn) in county i in year t,6 Xit in

the represents all variables and M1(Xit) is the conditional mean function. The variable

Sit represents the total annual soil loss (in tons) caused by both water and wind erosion,

while Wit is a vector of weather-related controls, including GDD, HDD, precipitation,

and a squared precipitation term. The term γ1t + γ2t
2 captures the trend component

to account for long-term temporal dynamics affecting all counties the same way, µi

5Figures on soil erosion include only counties used in either the corn or soybean yield estimation.
6We define the time index and trend variable by assigning the first year in the time span a value of 1,

the second year a value of 2, and so forth. This transformation standardizes the time scale, facilitating
the analysis of temporal effects
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represents county fixed effects to control for time-invariant county-specific factors, and

εit is the idiosyncratic error term.

Given the potential endogeneity between soil erosion and yield, especially endogene-

ity due to time-invariant unobservables, it is essential to include county fixed effects

in the panel model. County fixed effects (µi) account for unobserved, time-invariant

factors such as long term soil quality and long-standing farming practices, which may

differ across counties but remain constant over time. As noted by studies like Schlenker

and Roberts (2009), Deschênes and Greenstone (2007), and Lobell and Burke (2010),

including these controls is critical to ensure consistent estimates when analyzing crop

productivity relative to environmental factors. Similarly, the time trend terms (γ1t+γ2t
2)

control for national trends that affect all counties equally, such as advances in agricul-

tural technology or changes in policy. Research by Burke and Emerick (2016) highlights

the importance of incorporating time-varying factors, such as annual policy changes,

technological innovation, to accurately capture their influence on productivity. By in-

cluding both county fixed effects and time trends, we eliminate omitted variable bias due

to county-specific time-invariant unobservables and time-varying national-level shocks,

leading to more precise estimates of the effects of soil erosion.

Moreover, to address serial correlation and heteroscedasticity within counties, we

cluster the standard errors by county. This approach is recommended in panel data

settings where correlations within clusters (in this case, counties) might persist over time,

as discussed by Bertrand et al. (2004). Even with data collected at five-year intervals,

unobserved factors may introduce correlations across years within a county, making

county-level clustering an appropriate choice for robust standard error estimation.
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3.3 Estimation: Higher Moment Effects and Cost of Risk

The baseline model above allows one to assess the effect of soil erosion on mean crop

yields. To assess the impacts of soil erosion on the higher-order central moments of crop

yields, such as variance, skewness, and kurtosis, we use a “residual-based” estimation

procedure (Just and Pope, 1979; Antle and Goodger, 1984; Li et al., 2021). In particular,

we follow the parametric “residual-based” estimation method as described in Antle and

Goodger (1984). In this parametric approach, the mean yield effect is first estimated

from the base model (as in equation (1)), after which the residuals (ε̂it) from the con-

ditional mean estimation are calculated. These residuals are then raised to the second

power (for variance), the third power (for skewness), and the fourth power (for kurto-

sis), and used as dependent variables in separate regressions against the explanatory

variables.

The regression models take the following form:

(ε̂it)
p = Mp(Xit) + φ

(p)
it = α(p)Sit + β(p)Wit + γ

(p)
1 t+ γ

(p)
2 t2 + µ

(p)
i + φ

(p)
it(2)

where p ∈ {2, 3, 4} corresponds to variance, skewness, and kurtosis, respectively; φ
(p)
it is

an error term with mean zero; and Mp(Xit) is the conditional moment function for the

higher moments. Therefore, since we are investigating four moments and are looking at

yields from two crops (corn and soybeans), we have a total of eight separate regressions

for our baseline model results. The residual based approach we use allows for a detailed

understanding of how soil erosion affects not only the central tendency of yields, but

also the soil erosion effect on the higher order moments of the yield distribution. Hence,

we are able to ascertain the impact of of soil erosion on yield risk (as determined by the

variance, skewness, and kurtosis effects).

To further assess the soil erosion effects on yield risk, in addition to estimating the
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conditional mean yield model (Equation (1)) and higher-order conditional moments,

we also calculate the cost of risk (also called risk premium) following the approach in

Shi et al. (2013). A representative decision-maker (i.e., the farmer) is assumed to have

constant relative risk aversion (CRRA), as represented by parameter r, and as such their

utility function can be represented by the following expression:

U(y) =
y1−r

1− r
(3)

We can then assume that the risk aversion parameter is r = 3, which corresponds to

moderate risk aversion (i.e., given that r is typically in the range of 1 to 5 (Shi et al.,

2013)). With this utility function, the cost of risk (measure in the units of the dependent

variable Yit, which in our case is bushels per acre) is defined as follows:

R(X) = M1(X)− U−1 (E [U(Y (X))]) .(4)

Then from Equation (4), the cost of risk can be simplified to:

R(X) ≈ 3

2

M2(X)

M1(X)
− 2

M3(X)

M2
1 (X)

+
5

2

M4(X)

M3
1 (X)

.(5)

From the equation above, we can evaluate how the cost of risk responds to changes

in soil erosion levels. To do this, since the cost of risk is defined at a specific point of

X, we first fix all the variables in X at its mean (for each year) and then see how the

cost of risk changes as the soil erosion values increase (in 0.1 ktons increments). This

procedure allows us to observe how the cost of risk is affected by higher soil erosion levels

and then compare the contribution of each higher moment (e.g. the variance, skewness

and kurtosis) to the change in the cost of risk. Note that a higher (lower) cost of risk

indicates an increase (a reduction) in the farmers’ exposure to risk.
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3.4 Robustness Checks: Alternative Specifications

3.4.1 Alternative Soil Erosion Variables: Water versus Wind Erosion

As mentioned in the Background section, the mechanisms through which water-caused

soil erosion and wind-caused soil erosion affect crop yields are not exactly identical.

Additionally, farmers affected by either water or wind erosion may use different pro-

duction systems. Therefore, we conduct robustness checks where we estimate the same

models in Equations (1) and (2) but consider different soil erosion variables, analyz-

ing water-induced erosion and wind-induced erosion separately (rather than combined).

This robustness check gives some evidence as to whether water or wind erosion more

strongly influence mean yields or yield risk.

3.4.2 Additional Control Variables

For our second robustness check, we we use an alternative empirical specification that

includes additional control variables on the right side of Equations (1) and (2). That

is, we add covariates that also plausibly influence the crop yield outcomes of interest to

better tease out the yield effects of soil erosion. The idea is to avoid omitted variable bias

by including additional control variables in the specification. However, the disadvantage

of including these control variables in the specification is that these controls may be

endogenous in and of themselves and therefore add more noise to the estimation.

The additional control variables included in the alternative specification are: farm

acres operated, fertilizer expenditures (including lime and soil conditioners, measured

in dollars), and federal government program receipts (measured in dollars). We collect

data on these additional control variables from the Census of Agriculture, which is

available in the NASS database. Each control variable is divided by the number of farm
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operations reporting, such that each control is reported on a per-farm-operation basis.

Additionally, the fertilizer expenditure and government program payment variables are

adjusted using the Producer Price Index (PPI) to account for price inflation. Due to

data availability for these additional control variables, this robustness check analysis

only covers the period from 1997 to 2017. Moreover, it is important to note that these

additional control variables are not specifically associated with any particular type of

crop producer (i.e., the fertilizer expenditures are for all crop producers not just, say,

for corn or soybeans).

3.5 Robustness Checks: Alternative Estimation Strategies

In addition to the linear panel FE estimation procedure, we also utilize two other estima-

tion strategies as further robustness checks in the study. We implement two instrumental

variable (IV) based models – a traditional two stage least squares (2SLS) procedure and

an IV estimation strategy using heteroskedasticity-based instruments. However, since

these IV based models do not necessarily apply to the second step higher moment analy-

sis we used, we focus on implementing the IV based robustness checks on the mean yield

model in Equation (1). Hence, the robustness checks based on the IV based models in

this section only help validate results from our linear panel FE estimation of the mean

yield function.

3.5.1 Addressing Residual Endogeneity with 2SLS

In our panel fixed effect approach, we address endogeneity due to unobserved time-

invariant variables through county FEs. Morever, endogeneity due to unobserved yearly

shocks that affects all counties similarly are addressed through inclusion of year trends.

Hence, unobserved county-specific variables that are time-invariant (or roughly time-
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invariant or slow-moving), like a county’s inherent soil structure and quality, are ac-

counted for. Similarly, if a nationwide change in agricultural policy impacts all coun-

ties or if a new agricultural technology is promoted and adopted across the country

in a particular year, our time trend terms help capture these effects. Notwithstand-

ing the control of time-invariant and across-county-invariant unobservables, there may

be residual endogeneity remaining in our specification if there are time-county-varying

unobservables that influence both the soil erosion variable and the yield variable. For

example, unobserved input use or soil management practices adopted by farmers likely

vary across time and space and are likely to affect both soil erosion levels and yield

outcomes in each period (see Lal 2001, Hediger 2003, Dissart et al. 2000, Bakker et al.

2004, Colombo et al. 2005). Moreover, measurement errors in the soil erosion variable

(since the soil erosion values are partly based on predictive models), may also contribute

to residual endogeneity in our error terms and cause endogeneity issues in the linear

panel FE model.

To address potential residual endogeneity, we employ a 2SLS approach, using Con-

servation Reserve Program (CRP) cumulative enrollment (in acres) and average rental

payment (in $/acre) as instrumental variables (IVs). For an instrument to be valid, it

must satisfy two key conditions. First, the relevance condition, which requires that the

instrument is sufficiently correlated with the endogenous regressor. Second, the exo-

geneity condition, which requires that the instrument affects the outcome variable only

through its effect on the endogenous regressor, and is uncorrelated with the idiosyncratic

error term. Both IVs are reported based on the fiscal year ending on September 30th,

with rental payments disbursed at the beginning of the following fiscal year. CRP is a

government-led land conservation program where the government pays farmers to set

aside environmentally-sensitive parts of their fields to not be planted. This program
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plays a critical role in reducing soil erosion through the implementation of conservation

practices, such as establishing grasslands and vegetative covers on enrolled non-planted

lands. Hansen (2007) estimates that, without CRP, soil erosion would increase by 222

to 248 million tons per year—approximately 11% higher than current levels. This un-

derscores the program’s substantial impact in mitigating soil erosion, thereby preserving

land productivity and reducing environmental degradation.

Note that we select CRP-related data from the previous year, and therefore, we

believe that previous-year CRP enrollment likely satisfies the “relevance condition” for

a valid instrument (i.e., CRP enrollment is correlated with soil erosion). Similarly,

previous-year average rental payments (i.e., disbursed at the beginning of the current

fiscal year) are also likely to satisfy the “relevance condition” since CRP policy speci-

fies that county average CRP rental rates must be set based on non-irrigated cropland

rental rates, using a three-year average of NASS data to establish rental payments rates

(Hellerstein, 2017). Thus, average rental payments are also likely to satisfy the “rele-

vance condition”, as higher rental rates often reflect productive or well-maintained land

with better soil quality and lower erosion risk. However, higher rental rates also increase

the opportunity cost of conservation, encouraging intensive farming and potentially dis-

couraging soil conservation efforts.

However, for CRP relevant data to be a valid IV, the “exogeneity condition” should

also be plausibly satisfied (i.e., CRP enrollment and average rental payments are uncor-

related with unobservables that affect yields). We argue that CRP enrollment at the

county-level do not directly influence unobserved time-county-varying factors that influ-

ence yields. This is supported by previous studies that have shown that CRP does not

statistically influence corn and soybean yields directly (Udawatta et al., 2016). It is also

unlikely that current year or lagged year CRP enrollment are correlated with measure-
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ment errors in the current year soil erosion variable. The average rental payments are

determined by rental rates from previous years, which may reflect long-term historical

land productivity rather than current year conditions. Therefore, we believe that the

CRP enrollment and average rental payment are potentially valid IVs. Note that we

take the logarithm of average rental payments, as it serves as a stronger instrument than

the raw value. We also run several diagnostic tests to help determine if the IV we used

are strong and valid.

3.5.2 Heteroskedasticity-Based Instruments

To alleviate concerns regarding the validity of CRP cumulative enrollment and average

rental payment as IVs — specifically, the concern that these variables may still affect crop

yield through channels other than soil erosion — we also implement another alternative

IV-based estimation strategies to further validate the robustness of our findings regarding

the soil erosion impacts on mean yields.

The approach utilizes heteroskedasticity-based instruments, as proposed by Lewbel

(2012). This method is particularly useful for identifying structural parameters in mod-

els with endogenous regressors when traditional external instruments are unavailable.

The key idea is to extract heteroskedasticity in the error term to generate instruments

internally. Identification in Lewbel’s approach is achieved under the assumption that the

regressors are uncorrelated with the product of heteroskedastic errors, a condition that

often holds in models where error correlation arises from unobserved common factors.

In practice, instruments are constructed using the residuals from a first-stage regres-

sion of each endogenous regressor on all exogenous variables. These residuals are then

multiplied by the mean-centered exogenous regressors to form the instruments.
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Formally, the first-stage equation takes the form:

Sit = a+ bWit + eit,(6)

where Sit is the potentially endogenous soil erosion variable,Wit represents the exogenous

regressors, and eit is the residual. The heteroskedasticity-based instrument proposed by

Lewbel (2012) is then constructed as:

Zit = (Wit − W̄it)êit,(7)

where W̄it is the mean of Wit, and êit is the estimated residual from the first-stage

regression. The Lewbel (2012) IV in Equation (7) can then be considered an alternative

IV to those IVs based on CRP variables described in the previous section. The use of

internally generated heteroskedasticity-based instruments in a two-stage procedure offer

an alternative estimation strategy that may help address residual endogeneity arising

from time-county-varying unobservables, particularly in the absence of strong external

instruments.

Moreover, given the availability of two external CRP-based IVs and the heteroskedasticity-

based instruments, we also follow an empirical strategy suggested in Lewbel (2012) and

estimate the mean yield model using the following: (1) only the two external IVs; (2)

only the internally generated IV following Lewbel (2012); (3) both external IVs and the

internally generated IV; (4) one external IV based on CRP enrollment and the internally

generated IV; and (5) one external IV based on CRP rental payments and the internally

generated IV. All estimation results are followed by diagnostic tests to help determine

if the IVs used are strong and valid.
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4 Results and Discussion

4.1 Baseline model results

4.1.1 Mean Yield Effects

The estimated parameters using the baseline linear panel FE models are presented in

Tables 3 and 4 for corn and soybeans, respectively. The regression results indicate that

soil erosion has a statistically significant negative relationship with mean crop yields

for both corn and soybeans. That is, counties with higher soil erosion levels due to

both water and wind tend to have lower mean yields. For example, the regression

result in Table 3 suggest that an additional 1,000 tons in erosion-caused soil losses in a

county is associated with a 1.34 bushels per acre reduction in corn mean yield. These

results strongly align with the existing literature that shows that erosion reduces the

productivity of soils and consequently reduces mean crop yields (den Biggelaar et al.,

2001; Badreldin and Lobb, 2023; Zhang et al., 2021).

To better interpret and quantify the estimated impact of combined soil erosion on

mean crop yields, we conducted a back-of-the-envelope calculation using the 2017 av-

erage erosion levels and information from the 2024 USDA NASS database. In 2017,

the average combined soil erosion per county was approximately 0.785 thousand tons

for counties with available corn yield data, and 0.763 thousand tons for counties with

available soybean yield data. By multiplying these values with the estimated coefficients

from the “Mean” column in Tables 3 and 4, respectively, and multiplying further by the

total harvested areas, we estimate that soil erosion led to a national yield reduction of

approximately 87.2 million bushels for corn and 40.3 million bushels for soybeans. Valu-

ing these yield reduction figures at the 2024 annual average producer received prices—
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$4.27 per bushel for corn and $11.1 per bushel for soybeans —the estimated mean yield

losses due to soil erosion translates to an economic cost of approximately $372.34 mil-

lion for corn and $447.47 million for soybeans. In total, the estimated economic value of

the mean corn and soybean yield losses due to soil erosion amounts to roughly $819.81

million in 2024. These figures underscore the substantial economic burden posed by soil

degradation in U.S. agriculture.

These dollar figures highlight the significant economic impact of soil erosion on mean

row crop yield losses in the US. Although our estimates are lower than the economic

loss values reported by Pimentel et al. (1995) (i.e., their estimates are in the $44 billion

range), there are two key differences to consider. First, their estimates reflect the overall

cost of soil erosion to the US economy (not just the economic value of mean yield

losses), where they account for both on-site effects (such as crop yield reductions due

to lower fertility levels) and off-site effects (such as environmental degradation). In

contrast, our estimates focus specifically on the economic value of the yield loss from

soil erosion for two major row crops, corn and soybeans. Second, the acres harvested

and crop prices have grown rapidly over the past 40 years, likely contributing to the

disparity between our estimates and those in earlier studies. Nevertheless, our back-of-

the-envelope calculations compare favorably to the more recent loss estimates in Thaler

et al. (2021) (e.g., their estimates are around $500 to $600 million annually). But note

that our estimates cover a larger collection of US corn-producing counties relative to

the corn belt region examined in Thaler et al. (2021). Additionally, our yield reduction

calculation accounts for soil erosion as estimated by the NRI, which considers both

topsoil and deeper soil layers, rather than exclusively focusing on topsoil loss impacts

(as in Thaler et al. (2021)).

With regards to the weather variables that serve as controls in Tables 3 and 4,
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the estimated weather effects on yields largely follow expectations. We find that GDD

positively influence the mean yields of both row crops analyzed, and the parameters are

statistically significant at the 1% level. This indicates that favorable growing conditions

enhance mean yields. Conversely, HDD exhibit a statistically significant negative effect

on the mean yields of both corn and soybeans (at the 1% significance level), suggesting

that excessive heat accumulation can be detrimental to crop growth. Both precipitation

and time trend display significant quadratic effects on mean yields, with coefficients that

are statistically significant at the 1% level, capturing the expected nonlinear response

to precipitation in both crops.

4.1.2 Higher Moment Effects

When examining higher-order moments of yields, our regression results show mixed find-

ings across the two crops and across the different moments examined. For higher-order

moments of corn yield, our findings indicate that combined effects of water- and wind-

caused soil erosion has a statistically significant positive impact on both the variance and

kurtosis of yield (see Table 3). For the higher moments of soybean yield, the results are

less clear. While the estimates for erosion effects on variance and skewness of soybean

yields are positive, they are not statistically significant. Similarly, the estimate for the

soil erosion effect on kurtosis of soybean yields is also insignificant. On balance, our

higher moment analysis suggests that soil erosion more likely leads to higher yield risks

for corn (i.e., given its statistically significant positive effects on variance and kurtosis

on corn yields), but there is no strong evidence of this risk-increasing effect for soybeans.

Moreover, it is noteworthy that the estimated impact of soil erosion on all four moments

of the yield distribution is generally greater for corn than for soybeans, suggesting that

soil erosion likely poses a potentially greater threat to corn production than to soybean
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production in the US.

For the weather controls, the signs of the parameter estimates in the higher moment

analysis generally follow expectations. By and large, GDD reduces variance and kur-

tosis of corn and soybean yields, while HDD increases them. This is consistent with

expectations that detrimental heat can increase yield variability, while good tempera-

tures reduces yield variability. The signs of the precipitation parameters also largely

follow the idea that too much precipitation (e.g. flood conditions) likely increases yield

variability. Note however that the estimated weather variable parameters are not always

statistically significant in the higher moment analysis (though the variance and kurtosis

effects of GDD and HDD are more consistently significant).

4.1.3 Cost of Risk Results

Following Equation (5), we compute the cost of risk separately for corn and soybean

yields. Although the estimated effects of soil erosion and other control variables are

not statistically significant—particularly for soybeans in higher-order moment regres-

sions—we proceed under the assumption that all coefficients are significant for the pur-

pose of computing the cost of risk.

Soil erosion is assumed to vary between 0 and 1.5 thousand tons (with the actual

means in the data around 0.8 thousand tons). County fixed effects are set to their sample

mean, and all estimates are evaluated for the year 2017. The remaining covariates are

held at either their sample mean or median values, corresponding to the two curves

shown in Figures 3 and 4.

The computed cost of risk for corn ranges from 5 to 8.5 bushels per acre over this

erosion range, while the corresponding values for soybean yields range from 0.95 to 1.1

bushels per acre. The cost of risk increases linearly as soil erosion increases (though
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the slope for soybeans tend to be flatter). Furthermore, at the 2017 sample mean

of soil erosion levels (e.g., 0.785 for corn and 0.763 for soybeans), the corresponding

cost of risk for corn and soybeans are 7.344 and 1.056 bushels per acre, respectively.

Multiplying these figures by the 2024 price of both crops (e.g., $4.27 per bushel for corn

and $11.1 per bushel for soybeans) indicates that the value of the increased risk due to

soil erosion is about $31.36 per acre for corn and $11.72 per acre for soybeans. These

results highlights that the cost of risk associated with soil loss is substantially higher for

corn. This finding is consistent with Tables 3 and 4, where the estimated effects of soil

erosion on the higher-order moments tend to be larger in the corn yield regressions as

compared to the soybean yield regressions.

Using the per-acre cost of risk from the estimates above and multiplying by the har-

vested acreage—as done in the previous back-of-the-envelope calculation for mean yield

losses—the total economic cost of increased risk attributable to soil erosion is estimated

at $2.60 billion for corn and $1.01 billion for soybean. In total, the estimated economic

cost of increased risk due to soil erosion for both crops amounts to approximately $3.61

billion in 2024. This cost of increased risk due to soil erosion has not been quantified

in previous literature. Therefore, with the $819.81 million estimated losses from mean

yield reductions due to soil erosion, we estimate that the total damage of soil erosion

in terms of mean yield reduction and risk increases amounts to around $4.43 billion in

2024.

We also decomposed the cost of risk into the variance effect, skewness effect, and

kurtosis effect consistent with Equation (5) (see Appendix Tables A.11 and A.12). For

both crops, we find that majority of the overall risk effect of soil erosion can be largely

attributed to the variance effect. The effect of soil erosion on skewness and kurtosis only

contributes a small amount to the yield risk effects caused by erosion.
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4.2 Robustness checks results

4.2.1 Robustness checks results: Alternative Specifications

The first robustness check we performed involves estimating the baseline model sepa-

rately for water-induced erosion and wind-induced erosion, as shown in Appendix Tables

A.1, A.2, A.3, and A.4. The estimated coefficients for erosion, weather controls, and

time trend variables are roughly consistent with those from the baseline model that uses

a combined water and wind erosion measure. The detrimental effect of soil erosion on

mean yields and yield risk are still generally observed, although the results are some-

times not strongly consistent across runs (e.g., sometimes the significant estimates in

the baseline are insignificant or are of the wrong signs).

A second robustness check was conducted by adding three additional control vari-

ables – farm acres operated, fertilizer expenditures and federal government program

receipts. The idea is to include these additional controls to help sharpen identification.

Results for this robustness check is shown in Tables A.5 and A.6. When these new con-

trol variables are included, the estimated effect of soil erosion on the mean yield of corn

remains negative but becomes statistically insignificant, while the estimates for variance

and kurtosis remain consistent with the baseline model. In the case of soybeans, the

estimated effects of soil erosion across all moments are generally robust and remain con-

sistent with the main results. On balance, the findings from this robustness check using

additional controls largely tracks the baseline results though the results are somewhat

weaker.
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4.2.2 Robustness checks results: Alternative Estimation Strategies

In addition to testing robustness to alternative model specifications, we further assess

whether our main findings remain valid when addressing potential endogeneity in the

baseline empirical model specified in Equation (1). As part of this analysis, the third

robustness check employs two instrumental variables—CRP cumulative enrollment and

average rental payment—and implements a two-stage least squares (2SLS) estimation

strategy. The results are presented in Tables 5 and 6.

In Table 5, the first-stage regression confirms the relevance of the instruments: CRP

cumulative enrollment is negatively associated with soil erosion (significant at the 1%

level), while CRP average rent is positively associated (significant at the 5% level). The

weak instrument F-statistic indicates that the instruments are strongly correlated with

soil erosion, satisfying the relevance condition. The Wu-Hausman test fails to reject the

null hypothesis of exogeneity, suggesting that IV estimation may not be strictly necessary

in this case. However, we proceed with the IV approach to strengthen the robustness of

our findings. Additionally, the overidentification test fails to reject the null hypothesis,

indicating that the instruments are valid and satisfy the exclusion restriction. These

results suggest that CRP-related variables significantly explain variation in soil erosion.

In the second-stage IV regression, the estimated coefficient for soil erosion on corn yield

is -2.885, which is significant at the 10% level, supporting the baseline finding that

increased erosion reduces mean crop yield. However, the magnitude of the estimated

effect is approximately twice as large as that in the baseline model.

The IV estimation results for soybean yield are presented in Table 6, along with the

first-stage regression for soil erosion. Diagnostic tests confirm that the instruments are

strongly correlated with the endogenous variable, that soil erosion is endogenous, and

that the instruments used are valid, thereby supporting the appropriateness of the IV
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strategy. Our results indicate that an increase of one thousand tons of soil loss leads to

a reduction of 2.509 bushels per acre in soybean yield, and this effect is significant at

the 1% level. As with the corn results, the soil erosion impact on soybeans tend to be

larger using the 2SLS approach relative to the baseline panel fixed effects.

As an additional robustness check, we use 2SLS to estimate the impact of water-

and wind-induced soil erosion on the mean yields of corn and soybeans, as reported in

Tables A.7 and A.8. In each case, the weak identification test is rejected, while the

overidentification test is not rejected at conventional significance levels, confirming that

the selected instruments in each 2SLS estimation are both relevant and valid. Moreover,

all 2SLS estimates are consistent with the findings from Tables 5 and 6. That is, counties

experiencing more severe soil erosion—regardless of whether it is caused by water or

wind—suffer significantly lower corn and soybean yields.

Finally we implement the Lewbel (2012) heteroskedasticity-based IV procedure as

another robustness check to determine if the effect of soli erosion on mean yield still holds

when residual time–county varying unobservables are addressed using this econometric

procedure. Parameter estimates using the heteroskedasticity-based instrumental variable

procedure proposed by Lewbel (2012) are reported in Appendix Tables A.9 and A.10.

Overall, the results from the various heteroskedasticity-based IV models for both corn

and soybeans still support our main inferences from the baseline panel fixed effects model.

That is, counties experiencing higher levels of soil erosion tend to suffer statistically

significant mean yield losses. Our heteroskedasticity-based IV models also support the

inference from the baseline panel fixed effects model that the negative impact of soil

erosion on mean crop yields tend to be stronger for corn than soybeans.
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5 Conclusions

Agricultural success hinges significantly on the health of soils, making it a pivotal factor

in production agriculture. Soils play a multifaceted role, including nutrient and water

storage and the preservation of organic matter, all of which are essential for bolstering

farm productivity. Consequently, soil degradation, particularly through erosion, poses

a substantial threat to the efficacy of agricultural soils in fulfilling their functions and

enhancing productivity.

This study investigate the impact of soil erosion on crop yields in the US using

county-level panel data. Our analysis revealed that counties with higher levels of soil

erosion, whether due to water, wind, or a combination of both, tend to experience more

significant reductions in mean crop yields. Specifically, both the linear FE models and

the IV-based models consistently indicate a statistically significant negative impact of

soil erosion on mean yields of corn and soybeans. Our higher moment analysis further

reveal that soil erosion leads to an increase in the variance and kurtosis for corn yields,

highlighting that soil erosion increases yield risk in US corn production. However, this

pattern does not strongly hold for soybean yield risk, suggesting a more complex or

less pronounced impact of soil erosion on soybean yield variability. Our calculations

indicate that water- and wind-caused soil erosion in the US results in economic losses

amounting to around $4.43 billion in 2024 for corn and soybeans, with mean yield

reductions accounting for around $820 million and cost of increased risk accounting for

$3.61 billion.

Our findings have important implications for policymakers and stakeholders in agri-

culture. Understanding the overall impact of soil erosion on agricultural productivity –

both due to mean yield losses and risk increases – is crucial for justifying support for
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taxpayer-funded government programs that help encourage adoption of practices that

can alleviate soil erosion problems in agriculture. Our results demonstrates the magni-

tude of economic damages that soil erosion can cause in US row crop agriculture and

provides further justification for support of federal cost-share programs, like the Envi-

ronmental Quality Incentives Program (EQIP), and state-level cost-share programs that

encourage adoption of practices that can help mitigate soil erosion in farmer fields. These

programs are key for increased adoption of effective soil erosion mitigation strategies that

can help safeguard continued growth of US agriculture.

By quantifying both average yield losses and increased production risk due to erosion,

our findings highlight the economic rationale for investing in soil conservation to mitigate

its adverse effects on agricultural productivity. These results can help policymakers

better assess the returns to conservation efforts and support sustained funding for soil

health initiatives. National and state-level programs that promote erosion control play a

vital role in stabilizing crop production, ensuring long-term food security, and enhancing

the resilience of agricultural systems.

While this study provides new empirical evidence on the detrimental effects of soil

erosion on crop yields, it is not without limitations. First, our analysis uses aggregate

county-level data rather than individual farm-level data. Future research utilizing more

granular farm-level data could provide deeper insights into the impact of soil erosion on

yield and yield risk. Second, our data does not extend beyond 2017, and examining more

recent trends could help better capture the evolving dynamics of soil erosion and crop

yields in the context of changing climate conditions and agricultural practices. More

in-depth research along the lines of the suggestions above can further aid policymakers

and stakeholders in finding funding support for the development of targeted strategies

to protect soil resources and ensure long-term agricultural sustainability.
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Tables and Figures

Figure 1: Spatial coverage of observed counties for corn yield data

Figure 2: Spatial coverage of observed counties for soybean yield data

Note: Shaded counties indicate those with available data for all variables. Unshaded counties
are excluded due to missing or incomplete records.
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Figure 3: Corn Yield Cost of Risk

Figure 4: Soybean Yield Cost of Risk

Note: The vertical dashed line represents the average erosion level across all counties in
2017.
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Table 3: Effects of Combined Water and Wind Erosion on Mean, Variance, Skewness,
and Kurtosis of Corn Yield

Mean Variance Skewness Kurtosis

Soil Erosion −1.340∗ 82.662∗∗∗ 1,478.150 350,142.800∗∗

(0.774) (23.455) (2,295.625) (137,494.600)
GDD 23.472∗∗∗ −575.518∗∗∗ 3,503.856 −1,686,594.000∗∗∗

(2.246) (57.537) (5,443.237) (375,061.700)
HDD −523.532∗∗∗ 4,783.725∗∗∗ −5,570.423 14,934,048.000∗∗∗

(18.084) (491.201) (44,830.310) (2,611,316.000)
Precipitation 58.581∗∗∗ −478.242 2,811.570 −637,326.100

(12.616) (356.333) (34,479.920) (2,533,455.000)
Precipitation2 −33.274∗∗∗ 254.838 5,532.842 426,894.100

(9.937) (270.981) (26,103.820) (1,883,845.000)
Time Trend −5.327∗∗∗ 49.305∗∗∗ −112.152 185,856.900∗∗

(0.444) (13.487) (1,150.942) (92,942.180)
Time Trend2 1.639∗∗∗ 0.395 −157.827 −1,779.939

(0.054) (1.696) (136.938) (10,386.550)

County FE Yes Yes Yes Yes
Clustered SE (fips) Yes Yes Yes Yes
Observations 12,421 12,421 12,421 12,421
R2 0.475 0.057 0.003 0.013
Adjusted R2 0.357 −0.154 −0.220 −0.207

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Table 4: Effects of Combined Water and Wind Erosion on Mean, Variance, Skewness,
and Kurtosis of Soybean Yield

Mean Variance Skewness Kurtosis

Soil Erosion −0.614∗∗∗ 0.287 8.054 −198.053
(0.202) (1.138) (20.595) (287.828)

GDD 6.658∗∗∗ −16.286∗∗∗ −118.039 −2,058.059∗∗

(0.583) (3.737) (74.417) (958.216)
HDD −127.013∗∗∗ 171.571∗∗∗ 2,232.357∗∗∗ 19,120.240∗∗

(4.128) (27.182) (650.949) (8,391.444)
Precipitation 42.221∗∗∗ −18.843 −1,638.897∗∗ −11,127.510

(3.752) (27.758) (697.383) (10,545.970)
Precipitation2 −25.187∗∗∗ 11.465 1,477.287∗∗ 8,785.868

(3.056) (22.282) (576.215) (8,665.888)
Time Trend −0.711∗∗∗ 4.482∗∗∗ −3.799 422.304∗

(0.132) (0.905) (17.397) (218.771)
Time Trend2 0.392∗∗∗ −0.281∗∗ 1.494 −19.442

(0.017) (0.112) (2.178) (26.312)

County FE Yes Yes Yes Yes
Clustered SE (fips) Yes Yes Yes Yes
Observations 10,418 10,418 10,418 10,418
R2 0.561 0.030 0.009 0.007
Adjusted R2 0.462 −0.189 −0.214 −0.217

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Table 5: 2SLS Estimation of the Effects of Combined Water and Wind Erosion on Mean
Corn Yield

Soil Erosion Yield
First Stage IV Estimation

CRP Enrollment −0.013∗∗∗

(0.001)
CRP Rent 0.040

(0.028)
Soil Erosion −2.885∗

(1.751)
GDD 0.084∗∗ 23.847∗∗∗

(0.035) (2.259)
HDD 0.123 −523.248∗∗∗

(0.196) (18.045)
Precipitation 0.251 59.177∗∗∗

(0.201) (12.608)
Precipitation2 −0.146 −33.658∗∗∗

(0.154) (9.924)
Time Trend −0.119∗∗∗ −5.706∗∗∗

(0.010) (0.567)
Time Trend2 0.008∗∗∗ 1.673∗∗∗

(0.001) (0.063)

Diagnostic Tests
Test Statistic p-value

Wu-Hausamn 1.282 0.258
Kleibergen–Paap LM (under-ID) 62.926 0.000
Kleibergen–Paap Wald F(weak-ID) 55.544
Hansen J 0.244 0.621
County FE Yes Yes
Clustered SE (fips) Yes Yes
Observations 12,421 12,421
R2 0.270 0.474

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses. Wu–Hausman statistic is
used to check for the endogeneity of soil erosion variable. Kleibergen–Paap rk LM test evaluates
underidentification. Weak instrument test is assessed via the Kleibergen–Paap rk Wald F statistic,
compared to Stock–Yogo weak-ID critical values (10% = 19.93, 15% = 11.59). Hansen J statistic
tests overidentifying restrictions.
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Table 6: 2SLS Estimation of the Effects of Combined Water and Wind Erosion on Mean
Soybean Yield

Soil Erosion Yield
First Stage IV Estimation

CRP Enrollment −0.011∗∗∗

(0.001)
CRP Rent −0.050∗∗

(0.025)
Soil Erosion −2.509∗∗∗

(0.707)
GDD 0.029 6.930∗∗∗

(0.032) (0.580)
HDD 0.495∗∗∗ −125.644∗∗∗

(0.173) (4.215)
Precipitation 0.202 42.373∗∗∗

(0.169) (3.765)
Precipitation2 −0.075 −25.134∗∗∗

(0.127) (3.069)
Time Trend −0.145∗∗∗ −1.150∗∗∗

(0.012) (0.208)
Time Trend2 0.013∗∗∗ 0.433∗∗∗

(0.001) (0.023)

Diagnostic Tests
Test Statistic p-value

Wu-Hausamn 9.397 0.002
Kleibergen–Paap LM(under-ID) 52.475 0.000
Kleibergen–Paap Wald F(weak-ID) 40.357
Hansen J stat 0.536 0.464
County FE Yes Yes
Clustered SE (fips) Yes Yes
Observations 10,418 10,418
R2 0.261 0.557

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses. Wu–Hausman statistic is
used to check for the endogeneity of soil erosion variable. Kleibergen–Paap rk LM test evaluates
underidentification. Weak instrument test is assessed via the Kleibergen–Paap rk Wald F statistic,
compared to Stock–Yogo weak-ID critical values (10% = 19.93, 15% = 11.59). Hansen J statistic
tests overidentifying restrictions.
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Appendix

Figure A.1: Density distributions of crop yield and soil erosion

Note:Rows correspond to soil erosion (top), corn yield (middle), and soybean yield (bottom).
Within each row, the two panels show distributions for the first and last years, with kernel
density curves overlaid to highlight changes over time.
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Figure A.2: Annual Average Trends of Soil Erosion, Corn Yield, and Soybean Yield

Note:Each panel shows the yearly average across all counties in the dataset. Soil erosion
is measured in kilotons, and crop yields are in bushels per acre. Rows correspond to soil
erosion (top), corn yield (middle), and soybean yield (bottom).
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Figure A.3: Average soil erosion across counties

Note: Soil erosion values are averaged across all available years for each county. Only
counties used in either the corn or soybean yield estimations are included. The maps show
the spatial distribution of long-term average soil erosion.
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Figure A.4: Spatial distribution of average soil erosion across counties

Note: Soil erosion values represent the first (top) and last (bottom) year of the study period
for each county to ensure comparability over time.
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Figure A.5: Spatial distribution of average soil erosion across counties

Note: Maps show level changes in soil erosion (ktons) across counties over two time periods.
Top: 1987–2002; Bottom: 2002–2017. Only counties used in corn or soybean yield estima-
tions are included.
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Figure A.6: Spatial distribution of average soil erosion across counties

Note: Maps show percentage changes in soil erosion across counties over two time periods.
Top: 1987–2002; Bottom: 2002–2017. Only counties used in corn or soybean yield estima-
tions are included.
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Figure A.7: Spatial distribution of average corn yield across counties

Note: Yield values represent the year-averaged corn yield (in bushels per acre) for each
county over the full sample period.
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Figure A.8: Spatial distribution of corn yield in the first and last years

Note: Yield values represent the first (top) and last (bottom) year of the study period for
each county to ensure comparability over time.
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Figure A.9: Spatial distribution of average soybean yield

Note: Yield values represent the year-averaged soybean yield (in bushels per acre) for each
county over the full sample period.
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Figure A.10: Spatial distribution of soybean yield in the first and last years

Note: Yield values represent the first (top) and last (bottom) year of the study period for
each county to ensure comparability over time.
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Table A.1: Effects of Water Erosion on Mean, Variance, Skewness, and Kurtosis of Corn
Yield

Mean Variance Skewness Kurtosis

Water Erosion 2.363∗ 32.833 −1,102.404 269,111.400∗

(1.230) (30.393) (2,343.176) (149,371.700)
GDD 22.773∗∗∗ −556.404∗∗∗ 3,980.578 −1,634,374.000∗∗∗

(2.244) (57.132) (5,367.575) (367,239.200)
HDD −523.960∗∗∗ 4,802.129∗∗∗ −6,843.892 15,029,869.000∗∗∗

(18.150) (492.429) (45,013.630) (2,627,130.000)
Precipitation 57.999∗∗∗ −441.136 1,786.924 −456,007.200

(12.640) (363.224) (34,917.780) (2,596,635.000)
Precipitation2 −32.926∗∗∗ 227.352 6,483.165 295,022.400

(9.952) (275.734) (26,387.440) (1,928,752.000)
Time Trend −4.673∗∗∗ 33.299∗∗ −590.321 139,980.800

(0.457) (13.859) (1,156.337) (95,272.470)
Time Trend2 1.579∗∗∗ 1.841 −115.003 2,359.145

(0.056) (1.746) (139.733) (10,833.880)

County FE Yes Yes Yes Yes
Clustered SE (fips) Yes Yes Yes Yes
Observations 12,421 12,421 12,421 12,421
R2 0.474 0.055 0.003 0.013
Adjusted R2 0.357 −0.156 −0.220 −0.208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Table A.2: Effects of Wind Erosion on Mean, Variance, Skewness, and Kurtosis of Corn
Yield

Mean Variance Skewness Kurtosis

Wind Erosion −2.236∗∗ 91.989∗∗∗ 2,821.609 363,253.800∗∗

(0.936) (28.287) (2,731.694) (160,722.100)
GDD 23.335∗∗∗ −558.994∗∗∗ 3,507.324 −1,625,177.000∗∗∗

(2.240) (57.257) (5,424.440) (373,988.000)
HDD −523.539∗∗∗ 4,761.372∗∗∗ −3,578.608 14,885,816.000∗∗∗

(18.076) (491.395) (44,797.380) (2,605,108.000)
Precipitation 58.865∗∗∗ −492.159 4,134.436 −706,299.900

(12.595) (355.118) (34,347.100) (2,514,885.000)
Precipitation2 −33.482∗∗∗ 262.991 4,611.915 476,017.300

(9.922) (270.055) (26,011.810) (1,870,615.000)
Time Trend −5.240∗∗∗ 39.801∗∗∗ −228.693 140,354.400

(0.413) (12.913) (1,053.906) (87,079.200)
Time Trend2 1.630∗∗∗ 1.279 −145.633 2,411.489

(0.052) (1.673) (130.482) (10,037.700)

County FE Yes Yes Yes Yes
Clustered SE (fips) Yes Yes Yes Yes
Observations 12,421 12,421 12,421 12,421
R2 0.475 0.057 0.003 0.013
Adjusted R2 0.357 −0.154 −0.219 −0.208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Table A.3: Effects of Water Erosion on Mean, Variance, Skewness, and Kurtosis of
Soybean Yield

Mean Variance Skewness Kurtosis

Water Erosion −0.768∗∗ −4.181∗∗ 15.526 −336.816
(0.317) (1.911) (39.651) (660.302)

GDD 6.681∗∗∗ −16.133∗∗∗ −122.825 −2,087.062∗∗

(0.589) (3.759) (76.244) (994.033)
HDD −127.278∗∗∗ 174.844∗∗∗ 2,253.010∗∗∗ 19,287.540∗∗

(4.128) (27.230) (652.934) (8,379.064)
Precipitation 42.213∗∗∗ −18.235 −1,664.514∗∗ −11,551.410

(3.758) (27.777) (701.116) (10,650.900)
Precipitation2 −25.215∗∗∗ 11.383 1,498.490∗∗∗ 9,133.816

(3.060) (22.288) (579.330) (8,744.296)
Time Trend −0.682∗∗∗ 3.918∗∗∗ −3.825 444.430∗∗

(0.134) (0.915) (17.956) (218.931)
Time Trend2 0.390∗∗∗ −0.231∗∗ 1.511 −22.510

(0.017) (0.113) (2.211) (26.248)

County FE Yes Yes Yes Yes
Clustered SE (fips) Yes Yes Yes Yes
Observations 10,418 10,418 10,418 10,418
R2 0.561 0.030 0.009 0.007
Adjusted R2 0.462 −0.188 −0.214 −0.217

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Table A.4: Effects of Wind Erosion on Mean, Variance, Skewness, and Kurtosis of
Soybean Yield

Mean Variance Skewness Kurtosis

Wind Erosion −0.549∗∗ 2.207 3.670 −126.363
(0.248) (1.418) (24.589) (347.053)

GDD 6.570∗∗∗ −16.016∗∗∗ −116.942 −2,029.135∗∗

(0.583) (3.721) (74.114) (943.282)
HDD −127.188∗∗∗ 169.669∗∗∗ 2,244.752∗∗∗ 18,800.490∗∗

(4.132) (27.185) (651.802) (8,370.261)
Precipitation 42.186∗∗∗ −18.439 −1,618.678∗∗ −10,798.680

(3.748) (27.691) (691.248) (10,345.390)
Precipitation2 −25.182∗∗∗ 10.937 1,462.696∗∗ 8,496.859

(3.053) (22.224) (571.625) (8,507.373)
Time Trend −0.614∗∗∗ 4.544∗∗∗ −6.578 453.991∗∗

(0.122) (0.862) (15.768) (207.722)
Time Trend2 0.383∗∗∗ −0.285∗∗∗ 1.764 −22.284

(0.016) (0.109) (2.048) (25.358)

County FE Yes Yes Yes Yes
Clustered SE (fips) Yes Yes Yes Yes
Observations 10,418 10,418 10,418 10,418
R2 0.561 0.030 0.009 0.007
Adjusted R2 0.462 −0.189 −0.214 −0.217

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Table A.5: Effects of Combined Water and Wind Erosion on Mean, Variance, Skewness,
and Kurtosis of Corn Yield Extra Control Variables

Mean Variance Skewness Kurtosis

Soil Erosion −0.813 92.221∗∗∗ −717.753 379,260.600∗∗∗

(1.044) (34.799) (2,828.866) (141,176.700)
GDD 3.370 −345.196∗∗∗ 42,444.990∗∗∗ −1,923,361.000∗∗∗

(4.618) (101.603) (12,639.620) (501,519.400)
HDD −556.115∗∗∗ 1,958.695∗∗∗ 17,001.090 6,872,059.000∗∗

(24.450) (656.552) (56,707.700) (2,856,679.000)
Precipitation 42.218∗∗∗ −490.861 22,879.370 1,004,634.000

(15.128) (353.360) (40,209.360) (1,344,931.000)
Precipitation2 −22.910∗ 68.922 −16,222.840 −1,245,342.000

(11.839) (275.177) (30,857.260) (985,511.000)
Time Trend 8.645∗∗∗ 209.546∗∗∗ −19,095.300∗∗∗ 743,302.900∗∗∗

(1.781) (43.875) (5,783.665) (233,627.000)
Time Trend2 0.647∗∗ −24.859∗∗∗ 2,575.855∗∗∗ −90,109.500∗∗∗

(0.268) (6.609) (848.125) (33,980.150)
Farm Acres −0.008∗ −0.039 12.257 24.021

(0.004) (0.099) (20.106) (331.504)
Fertilizer Expense −0.010∗ 0.150 −4.503 271.995

(0.006) (0.148) (11.027) (557.989)
Government Subsidy −0.0003∗∗∗ −0.004∗∗ −0.074 −12.404∗∗

(0.0001) (0.002) (0.169) (6.007)

County FE Yes Yes Yes Yes
Clustered SE (fips) Yes Yes Yes Yes
Observations 8,428 8,428 8,428 8,428
R2 0.519 0.054 0.009 0.021
Adjusted R2 0.357 −0.265 −0.326 −0.309

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Table A.6: Effects of Combined Water and Wind Erosion on Mean, Variance, Skewness,
and Kurtosis of Soybean Yield Extra Control Variables

Mean Variance Skewness Kurtosis

Soil Erosion −0.567∗ −1.349 −18.618 −321.607
(0.320) (2.292) (43.286) (619.787)

GDD −6.791∗∗∗ −3.707 −0.811 1,816.855
(1.278) (7.765) (180.269) (2,666.916)

HDD −132.102∗∗∗ −6.427 1,448.741∗∗ −9,450.519
(5.072) (38.492) (700.880) (11,328.670)

Precipitation 49.858∗∗∗ 8.678 −1,050.057 8,030.003
(4.452) (27.118) (741.882) (10,249.470)

Precipitation2 −31.671∗∗∗ −11.502 901.537 −5,949.654
(3.624) (22.306) (606.450) (8,432.997)

Time Trend 3.968∗∗∗ 8.016∗∗ −54.535 253.711
(0.562) (3.760) (89.009) (1,586.758)

Time Trend2 −0.108 −1.138∗∗ 10.889 −65.098
(0.082) (0.558) (12.822) (223.147)

Farm Acres −0.009∗∗∗ 0.028∗∗∗ 0.086 3.101
(0.002) (0.010) (0.248) (2.882)

Fertilizer Expense 0.014∗∗∗ 0.013 −0.374 6.144∗

(0.002) (0.010) (0.258) (3.573)
Government Subsidy 0.00001 −0.0002 0.001 0.006

(0.00002) (0.0001) (0.002) (0.027)

County FE Yes Yes Yes Yes
Clustered SE (fips) Yes Yes Yes Yes
Observations 7,142 7,142 7,142 7,142
R2 0.589 0.011 0.004 0.003
Adjusted R2 0.452 −0.319 −0.329 −0.330

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Table A.7: 2SLS Estimation of the Effects of Water and Wind Erosion on Mean Corn
Yield

Water Erosion Wind Erosion

Erosion Variable −15.925∗ −3.440
(9.681) (2.159)

GDD 25.671∗∗∗ 23.436∗∗∗

(2.680) (2.235)
HDD −522.554∗∗∗ −523.411∗∗∗

(18.058) (18.053)
Precipitation 58.506∗∗∗ 59.296∗∗∗

(12.701) (12.599)
Precipitation2 −33.045∗∗∗ −33.774∗∗∗

(10.007) (9.915)
Time Trend −7.183∗∗∗ −5.371∗∗∗

(1.343) (0.450)
Time Trend2 1.812∗∗∗ 1.642∗∗∗

(0.128) (0.054)

Diagnostic Tests
Wu-Hausamn 5.837 (p = 0.016) 0.510 (p = 0.475)
Kleibergen–Paap LM stat (under-ID) 80.601 (p = 0.000) 44.065 (p = 0.000)
Kleibergen–Paap Wald F stat (weak-ID) 38.738 39.013
Hansen J statistic 0.004 (p = 0.951) 0.351 (p = 0.553)

County FE Yes Yes
Clustered SE (fips) Yes Yes
Observations 12,421 12,421
R2 0.255 0.466

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Wu–Hausman statistic is used to check for the endogeneity of
soil erosion variable. Kleibergen–Paap rk LM test evaluates underidentification. Weak instrument
test is assessed via the Kleibergen–Paap rk Wald F statistic, compared to Stock–Yogo weak-ID
critical values (10% = 19.93, 15% = 11.59). Hansen J statistic tests overidentifying restrictions.

67



Table A.8: 2SLS Estimation of the Effects of Water and Wind Erosion on Mean Soybean
Yield

Water Erosion Wind Erosion

Erosion Variable −9.092∗∗∗ −3.432∗∗∗

(2.849) (1.075)
GDD 7.877∗∗∗ 6.569∗∗∗

(0.702) (0.585)
HDD −125.339∗∗∗ −125.777∗∗∗

(4.297) (4.211)
Precipitation 42.661∗∗∗ 42.262∗∗∗

(3.828) (3.763)
Precipitation2 −25.326∗∗∗ −25.062∗∗∗

(3.125) (3.064)
Time Trend −1.919∗∗∗ −0.854∗∗∗

(0.439) (0.151)
Time Trend2 0.506∗∗∗ 0.405∗∗∗

(0.043) (0.018)

Diagnostic Tests
Wu-Hausamn 11.810 (p = 0.001) 11.622 (p = 0.001)
Kleibergen–Paap LM(under-ID) 71.065 (p = 0.000) 26.819 (p = 0.000)
Kleibergen–Paap Wald F (weak-ID) 26.835 18.816
Hansen J 1.223 (p = 0.269) 0.341 (p = 0.559)

County FE Yes Yes
Clustered SE (fips) Yes Yes
Observations 10,418 10,418
R2 0.537 0.554

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Wu–Hausman statistic is used to check for the endogeneity of
soil erosion variable. Kleibergen–Paap rk LM test evaluates underidentification. Weak instrument
test is assessed via the Kleibergen–Paap rk Wald F statistic, compared to Stock–Yogo weak-ID
critical values (10% = 19.93, 15% = 11.59). Hansen J statistic tests overidentifying restrictions.
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Table A.11: Estimated Cost of Risk for Corn

Soil Erosion COR due to COR due to COR due to COR
(ktons) Variance(bu/ac) Skewness(bu/ac) Kurtosis(bu/ac) (bu/ac)

0.0 4.884 0.862 0.760 6.506
0.1 4.973 0.850 0.789 6.612
0.2 5.061 0.838 0.819 6.718
0.3 5.150 0.826 0.848 6.824
0.4 5.239 0.814 0.878 6.931
0.5 5.328 0.801 0.908 7.038
0.6 5.418 0.789 0.938 7.145
0.7 5.507 0.777 0.969 7.252
0.8 5.597 0.765 0.999 7.360
0.9 5.686 0.752 1.030 7.468
1.0 5.776 0.740 1.060 7.577
1.1 5.867 0.727 1.091 7.685
1.2 5.957 0.715 1.122 7.794
1.3 6.047 0.702 1.154 7.903
1.4 6.138 0.690 1.185 8.013
1.5 6.229 0.677 1.217 8.122

Note: We use the parameter estimates for the mean, variance, skewness, and kurtosis to compute
the cost of risk as defined in Equation (5), although some of these estimates are not statistically
significant.
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Table A.12: Estimated Cost of Risk for Soybean

Soil Erosion COR due to COR due to COR due to COR
(ktons) Variance(bu/ac) Skewness(bu/ac) Kurtosis(bu/ac) (bu/ac)

0.0 0.971 −0.014 0.088 1.046
0.1 0.974 −0.014 0.088 1.048
0.2 0.976 −0.015 0.088 1.049
0.3 0.978 −0.016 0.088 1.050
0.4 0.981 −0.017 0.088 1.051
0.5 0.983 −0.018 0.088 1.053
0.6 0.985 −0.019 0.087 1.054
0.7 0.987 −0.019 0.087 1.055
0.8 0.990 −0.020 0.087 1.056
0.9 0.992 −0.021 0.087 1.058
1.0 0.994 −0.022 0.087 1.059
1.1 0.997 −0.023 0.086 1.060
1.2 0.999 −0.024 0.086 1.061
1.3 1.001 −0.025 0.086 1.063
1.4 1.004 −0.026 0.086 1.064
1.5 1.006 −0.026 0.086 1.065

Note: We use the parameter estimates for the mean, variance, skewness, and kurtosis to compute
the cost of risk as defined in Equation (5), although some of these estimates are not statistically
significant.
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